organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Hanife Saraçoğlu,^a* Nezihe Çalışkan,^a Ceyda Davran,^b Serkan Soylu,^a Hümeyra Batı^b and Orhan Büyükgüngör^a

^aDepartment of Physics, Art and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey, and ^bDepartment of Chemistry, Art and Sciences Faculty, Ondokuz Mayıs University, 55139 Samsun, Turkey

Correspondence e-mail: hanifesa@omu.edu.tr

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.035 wR factor = 0.076 Data-to-parameter ratio = 12.8

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

N-(1,3-Benzothiazol-2-yl)-4-(dimethylamino)benzylamine

The title compound, $C_{16}H_{15}N_3S$, crystallizes with Z = 8 in space group $P2_1/c$. The two crystallographically independent molecules, A and B, are rotational isomers around the C-N bond joining the benzothiazole and dimethylaminoaryl moieties. Molecules A and B have different intramolecular hydrogen bonds: C-H···N for molecule A and C-H···S for molecule B. For both molecules, intermolecular C-H··· π interactions are found between molecular pairs related by a centre of symmetry. The molecular packing is stabilized by C-H··· π and π - π intermolecular interactions.

Comment

Most Schiff bases have antibacterial, anticancer, *anti*-inflammatory and antitoxic activities (Williams, 1972), and the sulfurcontaining Schiff bases are particularly effective. Benzothiazolium groups have been used in organic dyes as either electron-withdrawing or electron-donating substituents, depending on whether the N atom is cationic or not (Zollinger, 1991). A number of thiazolyl- and benzothiazolylguanidines have been reported to exhibit antitubercular, antimalarial, central-nervous-system depressant, analgesic and antimicrobial activity against both Gram-positive and Gramnegative bacteria (Lakhan *et al.*, 2000).

Molecule B

(I)

Molecules A and B have the E configuration at the central C—N bond (Fig. 1). Rotational isomers A and B occur in the crystal structure as a result of a rotation around the C–N bond joining the benzothiazole and dimethylaminoaryl moieties. Selected geometric parameters are listed in Table 1. An intramolecular hydrogen bond is formed in each isomer: C–H···N type in isomer A and C–H···S type in isomer B (Table 2). For isomer A, the dihedral angle between the mean planes formed by the benzothiazole ring (C1–C6/S1/C7/N1) and the aryl group (C9–C14/N3/C15/C16) is 19.05 (9)°. The corresponding dihedral angle in isomer B is 13.84 (9)°.

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 27 September 2004 Accepted 15 October 2004 Online 22 October 2004

Figure 1

A view of the asymmetric unit of (I), showing the atom-numbering scheme and 50% probability displacement ellipsoids.

A diagram showing the intramolecular hydrogen bonds and $C-H\cdots\pi$ ring interactions as dashed lines. Displacement ellipsoids are drawn at the 30% probability level. Cg4 indicates the centre of gravity of the sixmembered aryl ring of isomer A and Cg6 the corresponding centre of gravity for isomer B. [Symmetry codes: (i) 1 - x, -y, -z; (ii) -x, -y, -z; 1 - z.]

The dihedral angle is $42.70 (4)^{\circ}$ between the mean molecular planes which are constituted by the non-H atoms of isomers A and B, respectively. In both isomers, intermolecular H... π -ring interactions are observed between dimethylaminoaryl moieties related by a centre of symmetry (Fig. 2). Similar C-H··· π interactions are found in a thiazole derivative having a short $H \cdots Cg$ distance of 2.93 Å (Barbarín *et al.*, 2003). Although the title compound has been described (Guo et al., 2002), no previous crystal structure determination is available.

There are many weak intermolecular π - π interactions between the aryl and benzothiazole rings. Dipole-dipole and van der Waals interactions are also effective in the molecular packing in the crystal structure.

Experimental

A solution of 2-aminobenzothiazole (5 mmol) in *n*-butanol (20 ml) was added dropwise to a hot solution of 4-(N,N-dimethylamino)benzaldehyde (5 mmol) in n-butanol (30 ml). The mixture was refluxed for 2 h. Then solution was reduced to half-volume (25 ml) by evaporation and allowed to cool. The precipitated product was filtered off and recrystallized from absolute ethanol. UV/vis (DMSO): λ_{max} (log ε) = 341 nm. IR (KBr, cm⁻¹): ν (C=N, azomethine) 1610 (s), ν (C=N, thiazole) 1577 (s), ν (C-S-C) 671 (m). ¹H NMR (d₆-DMSO, 200 MHz, p.p.m.): 8.99 (s, C-H), 7.99-6.80 (m, 8H), 3.06 (s, 6H). Analysis found: C 68.44, H 5.09, N 14.53%; calculated for C₁₆H₁₅N₃S: C 68.33, H 5.34, N 14.95%.

Crystal data

$C_{16}H_{15}N_3S$	$D_{\rm x} = 1.332 {\rm Mg} {\rm m}^{-3}$
$M_r = 281.37$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 14170
$a = 11.7771 (8) \text{\AA}$	reflections
b = 22.6876 (12) Å	$\theta = 1.8-27.1^{\circ}$
c = 11.7725 (9) Å	$\mu = 0.22 \text{ mm}^{-1}$
$\beta = 116.822 \ (5)^{\circ}$	T = 293 (2) K
V = 2807.1 (3) Å ³	Plate, orange
Z = 8	$0.66 \times 0.37 \times 0.11 \text{ mm}$
Data collection	

Stoe IPDS-2 diffractometer 4662 independent reflections φ and ω scans 2653 reflections with $I > 2\sigma(I)$ $R_{\rm int}=0.050$ Absorption correction: by integration (X-RED32; $\theta_{\rm max} = 25.0^{\circ}$ $h = -14 \rightarrow 13$ Stoe & Cie, 2002) $k = -26 \rightarrow 26$ $T_{\min} = 0.899, \ T_{\max} = 0.979$ 17 481 measured reflections $l = -13 \rightarrow 13$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.035$	H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0358P)^2]$
$wR(F^2) = 0.076$	where $P = (F_o^2 + 2F_c^2)/3$
4662 reflections	$(\Delta/\sigma)_{\rm max} = 0.010$ $\Delta \rho_{\rm max} = 0.21 \text{ e} \text{ Å}^{-3}$
365 parameters	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Selected geometric parameters (Å, °).

$\begin{array}{ccc} 400 (3) & C17-N4 \\ 729 (2) & C22-S2 \\ 305 (3) & C23-N4 \end{array}$	1.391 (3) 1.733 (2)
729(2) $C22-S2305(3)$ $C23-N4$	1.733 (2)
305(3) C23-N4	
	1.299 (2)
399 (3) C23–N5	1.376 (3)
726 (2) C23-S2	1.771 (2)
269 (2) C24–N5	1.291 (2)
452 (3) C24–C25	1.432 (3)
7 (2) C8-N2-0	C7 117.8 (2)
13 (17) C24-N5-	-C23 119.38 (19)
S(2) C7-S1-C	26 89.02 (11)
99 (16) C22-S2-	C23 88.76 (11)
4 (2) C25-C24-	-N5-C23 175.93 (18)
5 (4) N4-C23-	-N5-C24 175.59 (19)
18 (16) S2-C23-	N5-C24 -7.5 (3)
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

organic papers

Table 2	
Hydrogen-bonding geometry (Å, °).	

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$\begin{array}{c} C8-H8\cdots N1\\ C24-H24\cdots S2 \end{array}$	0.93	2.48	2.818 (3)	102
	0.93	2.53	3.000 (2)	112

All H atoms were placed in calculated positions (C–H = 0.93–0.96 Å) and refined using a riding model. Their $U_{\rm iso}$ values were constrained to be 1.2 (1.5 for methyl groups) times $U_{\rm eq}$ of the carrier atom.

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to

prepare material for publication: *WinGX* publication routines (Farrugia, 1999).

References

- Barbarín, C. R., Bernès, S., Sánchez-Viesca, F. & Berros, M. (2003). *Acta Cryst.* C**59**, 0360–0362.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Guo, Y.-S., Yu, Z.-H. & Jin, X.-L. (2002). Acta Chim. Sin. 60, 228-233.
- Lakhan, R., Sharma, B. P. & Shukla, B. N. (2000). Il Farmaco, 55, 331-337.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Stoe & Cie (2002). X-AREA (Version 1.18) and X-RED32 (Version 1.04). Stoe & Cie, Darmstadt, Germany.
- Williams, D. R. (1972). Chem. Rev. 72, 203-213.
- Zollinger, H. (1991). Color Chemistry. Syntheses, Properties and Applications of Organic Dyes and Pigments, 2nd ed. Weinheim: VCH.